What are the properties of the nuclear matter? Cold nuclear matter ⇒ Hot medium ## CGC = THEORY OF GLUON SATURATION Solution to the classical Yang-Mills equations $$F_{\mu\nu} \sim rac{Q_s^2}{g}$$ with $Q_s^2 \sim ho \sim A^{1/3} \, s^{\lambda}$ Asymptotic freedom: $\alpha_s(Q_s^2) << 1 \Rightarrow$ Perturbation theory is valid! Factorization theorems are broken at low x and high A, but a new type of universal characteristic of hadron/nucleus wave function emerges: color multipole. ## GRIBOV-LEVIN-RYSKIN DIAGRAM ## INCLUSIVE LIGHT HADRONS Multiplicity is determined only by the initial conditions KLN model ## dN/dη vs Centrality at η=0 ## HADRON MULTIPLICITY Kharzeev, Levin, Nardi ## LIGHT HADRON SPECTRA Kovchegov, KT, 2001 Kharzeev, Kovchegov, KT, 2005 #### FROM PATO AA • Factorization holds for inclusive gluon production in pA (this is the only known case). However, there are no analytical results for AA \rightarrow need models or numerical calculations \rightarrow uncertainties. If there is a factorization we can infer the magnitude of the cold nuclear matter effect in AA from that in DA #### EFFECT OF FRAGMENTATION? - Fragmentation depends only on x_p - Saturation effect depends only on xA \Rightarrow can be tasted by measurements at different \sqrt{s} . FIG. 3: Ratio of negative particles production rates in d-Au and pp collisions as function of pr. Data are from [1], solid and dashed curves correspond to calculations with the diquark size 0.3 fm and 0.4 fm respectively. ## HEAVY QUARKS 'Heavy' and 'light' are determined by the ratio m²/Q_s² - Heavy quarks are produced at short distances ~1/2m~0.1 fm (charm) $\Rightarrow \alpha_s <<1$ - However, quarkonium binding is not perturbative: $$\frac{M^2 - 4m^2}{4m^2} \ll 1$$ Therefore, $cc \rightarrow J/\psi$ is non-perturbative # INCLUSIVE OPEN HEAVY QUARK Kopeliovich et al, 2001 KT 2004; Blaizot, Gelis, Venugopalan 2004; Kovchegov, KT 2006 ## INCLUSIVE OPEN CHARM KT, 2004, 2007 ## INCLUSIVE OPEN BEAUTY KKT model KT, 2007 Need higher p_T measurements to understand the transition to hard pQCD # FACTORIZATION IN OPEN CHARM Fujii, Gelis, Venugopalan # FACTORIZATION IN J/Y We cannot infer the the cold nuclear matter effect in AA from DA. # ASSUMING FACTORIZATION IN J/Y The effective absorption cross sections from fits of Ramona's calculations of PHENIX d+Au R_{CP} data are shown for each shadowing model. Slide stolen from T. Frawley Similar results obtained by Lansberg et al 2010. # J/Y PRODUCTION MECHANISMS Color singlet model J/ψ production at the Tevatron Color evaporation model Production mechanism in pA is different! Non-relativistic QCD model # J/Y PRODUCTION IN PA Kharzeev, KT,2005 Kharzeev, Levin, Nardi, KT,2009 Note that the factorization is broken already at the lowest order. # BREAKDOWN OF XF SCALING $$\sigma_{pA}=A^{\alpha}\sigma_{pp}$$ α =2/3 plateau: black disk regime. #### Additional assumptions: - J/ψ is non-relativistic. Relativistic correction depends on m but not on energy included in prefactor. - Parametrically small corrections due to the real part and off-diagonal matrix elements are neglected. # J/Y PRODUCTION IN DA AND AA Anomalous suppression in AA is probably due to hot medium effects. - Polarization of J/ψ -? - \bullet Production of $\chi_{\text{\tiny C}},\,\psi^{,}$ -? - Compare with DY. Need these measurements in dA! It may shed light on J/ψ production in pp ... ## DIFFRACTION Diffraction measures quantum fluctuations of the CGC fields #### DIFFRACTION IN PA KT, 2008 Similar to inclusive hadrons, but much stronger rapidity dependence ⇒ more sensitive to low x. #### AZIMUTHAL CORRELATIONS IN PA KT, 2010 FIG. 1: Correlation function at the central rapidity. Kinematic region is $4 < p_T < 6$, $2 < p_A < p_T$ (all momenta are in GeV), $y_T = 3.1$, $y_A = 3$. Left (right) panel: minbias pp (dAu) collisions. Data from [48]. Need higher pt FIG. 2: Correlation function at forward rapidities. Kinematic region is $p_T > 4$, $1.5 < p_A < p_T$ (all momenta are in GeV), $y_T = 3.1$, $y_A = 3$. Left (right) panel: the minbias pp (dAu) collisions. Data from [49]. Azimuthal correlations in pA:→ calibration of AA ## AZIMUTHAL CORRELATIONS FROM CGC ## AZIMUTHAL CORRELATIONS Rapidity correlations → Kevin Dusling ## STRONG MAGNETIC FIELD - •eB≈ m_{π}^2 >> m_e^2 → above the Schwinger's value! - •B≈const - A fascinating opportunity to study the high intensity QED! - E.g. strong B indices energy loss on fermions that can prevent light quarks from escaping the plasma (at LHC). - This energy loss is azimuthally asymmetric contributes to V_2 . #### SUMMARY - 1. High p_T , higher statistics measurements in dA will certainly help restrict CGC model parameters and allow better calibration of AA. - At high p_T CGC must agree with pQCD. What is the relevant scale? - 2. R_{dA} at higher/lower energy is needed to resolve the role of fragmentation vs CGC. - 3. J/ ψ production mechanism remains as mysterious as ever. Measurements of ψ ', χ_c , etc., polarizations and p_T spectra will certainly help. - 4. Correlations in impact parameter space (diffraction), rapidity and azimuth (v_2) yield a lot of interesting information \Rightarrow but must be calibrated in dA! - 5. If existence of strong magnetic field B is experimentally confirmed, RHIC will be the first machine in the world to study the high intensity super-critical QED. Don't miss the opportunity!